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ABSTRACT: Isoflavones found in soybeans and soy products possess clinically relevant properties. However, the anti-allergic
effect of isoflavones has been poorly studied. We examined the effects of isoflavones, genistein, daidzein, and equol, on the
expression of the high-affinity immunoglobulin E (IgE) receptor, FceRl, which plays a central role in IgE-mediated allergic
response. Flow cytometric analysis showed that all of these isoflavones reduced the cell surface expression of FceRI on mouse
bone-marrow-derived mast cells and human basophilic KU812 cells. All isoflavones decreased the levels of the FceRIa mRNA in
the cells. Genistein reduced the mRNA expression of the f# chain, and daidzein and equol downregulated that of the ¥ chain. The
suppressive effects of isoflavones on FceRI expression were unaffected by ICI 182,780, an estrogen receptor antagonist,
suggesting that these effects were independent of estrogen receptors.
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H INTRODUCTION structure, and include monomeric flavanols, flavanones, flavones,
flavonols, and isoflavones. Some flavonoids possess various
clinically relevant properties, such as antitumor, antiplatelet,
anti-ischemic, and anti-inflammatory activities." !> Moreover,
some flavonoids were previously shown to inhibit histamine
release from human basophils and rat mast cells."*'* Isoflavones,
found mainly in soy and soy foods, exist as glycoside in nature, an
inactive form to which a sugar is conjugated. Glycosides are not
absorbed in small intestine and require hydrolysis for bio-
availability and subsequent metabolism." Ingested isoflavone
glycosides are hydrolyzed by intestinal glucosidases, producing
the aglycones, genistein, daidzein, and glycitein. Daidzein is
converted to equol by intestinal bacteria after undergoing meta-
bolism to dihydroch'dzein16 (Figure 1). These isoflavones are
well-established as phytoestro%ens because they have avidity for
estrogen receptors (ERs).'”~"” They inhibit the reduction in
bone mass induced by estrogen deficiency, being effective for
the prevention of osteoporosis,20 and they have been associated
with reduced incidences of breast and prostate cancers and
cardiovascular diseases.>’ However, the anti-allergic effect of
isoflavones has been poorly studied. In the present study, we
examined the effect of isoflavones, genistein, daidzein, and
equol, on the expression of FceRI in mouse mast cells and
human basophils.

Mast cells are resident cells of several types of tissues and con-
tain many granules, such as histamine, which is a chemical
mediator, causing some of the symptoms of an allergic reaction.
Basophils have similar characteristics to mast cells in that they
store and secrete histamine. Immunoglobulin E (IgE) produced
by B cells is a key molecule to trigger the release of chemical
mediators from these cells. Mast cells and basophils express
high-affinity IgE receptor (FceRI) on their cell surface, and
cross-linking of allergen-specific IgE bound to FceRI leads to
the release of inflammatory mediators. Therefore, FceRI is key
for the triggering of an IgE-mediated allergic reaction, such as
those seen in atopic dermatitis, bronchial asthma, allergic
rhinitis, and food allergy.l’2 FceRI is a tetrameric structure
consisting of an @, a f#, and two ¥ chains. In humans, the tetra-
meric structure is not obligatory because an alternative form is
present, comprising an ay2 trimer.” The @ chain mostly extends
out to the extracellular region and binds with high affinity to
the Fc portion of IgE, while the y chains transduce the signals.®
The f chain is an amplifier of signal strength®® and enhances
the expression of unoccupied receptors on the cell surface.’
Analysis of FceRla-deficient mice demonstrated that IgE
cannot bind to the cell surface of mast cells, and consequently,
degranulation through IgE-binding cannot be induced.” Thus, it
is expected that the downregulation of FceRI expression in
mast cells and basophils can lead to the attenuation of IgE- W MATERIALS AND METHODS
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Figure 1. Chemical structure of soy isoflavones. Genistein and daidzein are two major isoflavones in soybean. Equol is converted from daidzein by

intestinal bacteria.

from LC Laboratories (Woburn, MA), and (S)-equol and (R)-equol
were obtained from Cayman Chemical (Ann Arbor, MI). Stock
solutions of genistein, daidzein, (R,S)-equol, (S)-equol, and (R)-equol
were prepared in dimethylsulfoxide (DMSO). 17p-Estradiol (E2) was
obtained from Sigma Chemical Co. (St. Louis, MO) and dissolved in
DMSO. ICI 182,780 was purchased from Tocris Bioscience (Bristol,
U.K.) and dissolved in ethanol (EtOH). Mouse anti-human FceRla
monoclonal antibody CRA-1 was obtained from Kyokuto Seiyaku
(Tokyo, Japan). Negative-control mouse IgG2b antibody was
purchased from DakoCytomation Denmark (Glostrup, Denmark).
Fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG
antibody was purchased from Protos Immunoresearch (Burlingame, CA).
Mouse anti-phosphorylated extracellular signal-regulated kinase 1/2
(ERK1/2), rabbit anti-ERK1/2, and mouse anti-ERa antibodies were
obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).
Horseradish peroxidase (HRP)-conjugated anti-mouse IgG and HRP-
conjugated anti-rabbit antibodies were obtained from Zymed
Laboratories, Inc. (San Francisco, CA) and ICN Pharmaceuticals,
Inc. (Aurora, OH), respectively.

Cell Culture. KU812 cells were obtained from the Japanese Cancer
Resources Bank (Tokyo, Japan) and were maintained in RPMI-1640
culture medium (Nissui, Tokyo, Japan) supplemented with 5% fetal
bovine serum (Intergen, Purchase, NY), 100 units/mL penicillin G
(Meiji Seika, Tokyo Japan), 100 mg/mL streptomycin (Meiji Seika),
and 10 mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid
(HEPES, Wako Pure Chemical Industries, Osaka, Japan) buffer. KU812
cells were cultured at 37 °C in a humidified atmosphere with 5% CO,.

Preparation of Mouse Bone-Marrow-Derived Mast Cells
(BMMCs). Femurs and tibias were harvested from 13-week-old male
BALB/c mice (Charles River Laboratories Japan, Inc., Kanagawa,
Japan). Both ends were severed, and they were steeped in RPMI-1640
medium. Bone marrow cells were harvested from the medium by
filtration and washed in RPMI-1640 medium. The bone marrow cells
were cultured in medium containing S ng/mL mouse interleukin-3,
minimal essential medium (MEM) non-essential amino acid solution,
and 10% fetal bovine serum (FBS) for 3 weeks to differentiate into
mast cells. The BMMCs were used for experiments after confirmation
that more than 80% of cells were treated with toluidine blue (Sigma
Chemical Co.), which stains mast cells reddish purple.

Flow Cytometric Analysis of Cell Surface FceRI Expression.
The cell surface expression of FceRI was assessed by flow cytometry.
BMMCs and KU812 cells cultured with or without isoflavones were
incubated with the anti-FceRI a chain mouse monoclonal antibody for
60 min at 4 °C. The cells were then washed once in phosphate-buftered
saline (PBS) and exposed to the FITC-conjugated F(ab’), goat anti-
mouse IgG for 60 min at 4 °C. The cells were washed in PBS again, and
then detection of the cell surface FceRI o chain was performed using a
FACSCalibur flow cytometer (Becton Dickinson, Sunnyvale, CA). Mouse
IgG2b antibody was used as the isotype-matched negative control.

Cytotoxicity Assay. Cell viability was analyzed with the trypan
blue dye exclusion assay. After the exposure to 10 or 25 uM iso-
flavones for the indicated times (24, 48, or 72 h), cells were collected,
suspended in a trypan blue solution, and counted using a hemo-
cytometer. The cells with or without blue dye staining were recorded
as dead or alive, respectively.

Quantitative Reverse-Transcription Polymerase Chain Re-
action (PCR). Cells were incubated with or without 25 M isoflavones
for 24 h. Total RNA was extracted from cells using Trizol (Invitrogen,
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Carlsbad, CA) following the instructions of the manufacturer. First-
strand cDNA was synthesized from total RNA (400 ng) with PrimeScript
RT reagent kit (Takara Bio, Inc, Shiga, Japan). Quantitative real-time
PCR was performed using a thermal cycler dice real-time system (Takara
Bio, Inc.). Specific primer sequences for each gene were as follows:
human FceRla, sense 5'-GCAAAGTGTGGCAGCTGGACTA-3’ and
antisense 5'-CTGTGTCCACAGCAAACAGAATCA-3’; human
FceRIp, sense §'-GCTTTATTTAATTGTAGGGCCTGAG-3' and
antisense 5-CATGCCATGGAAGTGATGTG-3’; human FceRlIy, sense
§’-CTCCAGCCCAAGATGATTCCA-3' and antisense 5'-GCATCCAG-
GATATAGCAGCAGAGCTGA-3’; human f-actin, sense S-TGGCAC-
CCAGCACAATGAA-3' and antisense 5'-CTAAGTCATAGTCCGCC-
TAGAAGCA-3'.

Immunoblot Analysis. Cells were rinsed once with PBS and lysed
in 1% Triton X-100 lysis buffer [SO mM Tris-HCl (pH 7.5), 150 mM
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Figure 2. Effect of isoflavones on cell surface expression levels of
FceRI in mast cells. Mouse BMMCs were cultured with 20 yM
genistein, daidzein, or (R,S)-equol for 24 h in 5% FBS—RPMI-1640
medium. FceRla expression was assessed by flow cytometric analysis.
The left curves in the data indicate the fluorescence used with isotype
control antibody, and the right curves are those with anti-FceRI
antibody. The mean values indicate the average of fluorescence
intensity of FceRI, and relative values represent the ratio of the mean
values compared to that of DMSO-treated cells.
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Figure 3. Effect of isoflavones on the cell surface expression levels of FceRI in basophils. (A) Human basophilic KU812 cells were cultured
with S, 10, or 25 M genistein, daidzein, or (R,S)-equol for 24 h in 5% FBS—RPMI-1640 medium. Then, FceRla expression level in the cells was
assessed by flow cytometric analysis, as noted in Figure 2. (B) KU812 cells were cultured with 10 or 25 yM genistein, daidzein, or (R,S)-equol for 24,
48, or 72 h in 5% FBS—RPMI-1640 medium. Then, the cell viability was assayed by trypan blue staining. Data are presented as the mean + SD,

with n = 3.

NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), SO mM NaF,
30 mM Na,P,0,, 1 mM phenylmethylsulfonyl fluoride (PMSF), and
2 pg/mL aprotinin]. Insoluble material was removed by centrifugation
at 12000g for 10 min at 4 °C. Prior to analysis, total protein in the cell
lysates was measured using a colorimetric bicinchoninic acid protein
assay (Pierce Biotechnology, Inc., Rockford, IL) against bovine serum
albumin (BSA) standards. The proteins were eluted by sodium
dodecyl sulfate—polyacrylamide gel electrophoresis (SDS—PAGE)
sample buffer. The cell lysates were run on a 10% SDS—PAGE gel and
blotted onto nitrocellulose membranes. After blocking, proteins were
identified using mouse anti-phosphorylated ERK1/2, rabbit anti-
ERK1/2, mouse anti-FceRIa, or mouse anti-ERa antibodies. The
bands were visualized with HRP-conjugated anti-mouse IgG or anti-
rabbit IgG antibodies, followed by visualization using the ECL system
(GE Healthcare, Little Chalfont, U.K.).

Statistical Analysis. For all of the sections, the experiments were
performed at least 3 times and the representative data were shown.
Results are expressed as the mean + standard deviation (SD) in
Figures 4—6A. A Student’s t test was used to determine statistical
significance between the control and test groups. p values of <0.05
were considered to be statistically significant.
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B RESULTS AND DISCUSSION

Isoflavones Suppress Cell Surface Expression of FceRlI
in Mouse BMMCs. We examined whether isoflavones reduce
cell surface expression of FceRI in mouse BMMC:s by culturing
them with genistein, daidzein, or (R,S)-equol for 24 h before
analysis by flow cytometry. The levels of cell surface FceRlar
were lower in the cells treated with the isoflavones when com-
pared to control cells (Figure 2), suggesting that these three
isoflavones have a suppressive effect on the cell surface expres-
sion of FceRla in mouse BMMCs. The mean fluorescence
intensity of FceRla expression in (R,S)-equol-treated cells was
lower compared to genistein- or daidzein-treated cells,
indicating that the suppressive effect of (R,S)-equol on FceRla
expression is stronger than that of genistein or daidzein.

Isoflavones Suppress the Cell Surface Expression of
FceRl in a Human Basophilic Cell Line. Next, we addressed
whether isoflavones had inhibitory effects on cell surface expres-
sion of FceRI in the human basophil cell line KU812. All of the
isoflavones tested were shown to suppress the cell surface

dx.doi.org/10.1021/jf301759s | J. Agric. Food Chem. 2012, 60, 8379—8385
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Figure 4. Effect of isoflavones on the mRNA expression levels of FceRla, FceRIp, and FceRlIy chains in basophils. KU812 cells were cultured in the
presence of 25 uM genistein, daidzein, (R,S)-equol, (S)-equol, or (R)-equol for 24 h in 5% FBS—RPMI-1640 medium. After total mRNA isolation
from the cells was performed, mRNA expression levels of (A and D) FceRla, (B and E) FceRIp, and (C and F) FceRly chains were analyzed by
quantitative RT-PCR. Each expression was normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. Data are presented as
the mean + SD, with n = 3. (%) p < 0.0, (*%) p < 0.01, and (s::) p < 0.001.

expression of FceRla at concentrations higher than 5 uM
(Figure 3A). Among three isoflavones, (R,S)-equol most
powerfully suppressed the FceRla expression in KU812 cells,
similar to the result in mouse BMMCs. Although the con-
centrations of isoflavones tested were slightly higher than the
physiological concentrations, they had no effect on the cell
viability at concentrations lower than 25 uM, which was assayed
by trypan blue stain (Figure 3B). These data suggest that iso-
flavones suppress the cell surface expression of FceRla in KU812
cells without cytotoxicity.

Isoflavones Suppress the mRNA Expression of FceRI
Subunits in a Human Basophilic Cell Line. To elucidate
the molecular mechanism by which these isoflavones are able to
suppress the cell surface expression of FceRIa, we examined the
effect of the isoflavones on the mRNA expression level of
FceRla (Figure 4A). All of the cells treated with genistein,
daidzein, and (R,S)-equol exhibited a significantly lower mRNA
expression level of FceRla, as compared to the control cells,
suggesting that the isoflavones reduce the amount of cell
surface expression of FceRla by reducing the mRNA expres-
sion level. However, other effects would also be involved in
their suppressive effect on the cell surface expression of FceRla
because the intensity of their effect on the mRNA level of
FceRla disagrees with that on the cell surface expression level
of FceRla. Furthermore, we addressed the mRNA expression
levels of FceRIf and FceRly (panels B and C of Figure 4). Only
genistein reduced the mRNA expression level of FceRIf. On
the other hand, daidzein and equol decreased the FceRly
mRNA expression level, whereas genistein had little effect.
These data suggest that the difference between the effects of
these isoflavones on the mRNA expression of f# and y chains
might be involved in the presence or absence of the hydroxyl
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Figure S. Effect of isoflavones on ERK1/2 phosphorylation. KU812
cells were cultured in the presence of 25 uM genistein, daidzein, or
(R,S)-equol for 6 or 24 h in 5% FBS—RPMI-1640 medium. The cell
lysates were prepared and subjected to 10% SDS—PAGE. Phosphory-
lated ERK1/2 was detected by immunoblotting using an anti-phospho-
ERK1/2 antibody. Data are presented as the mean + SD, with n = 3.

group at position 5 of A ring and/or the tyrosine kinase
inhibitory effect characteristic of genistein.”” It has been re-
ported that FceRIf is involved in the pathogenesis of atopic
disease,”®> and oral genistein suppresses the development of
atopic dermatitis in NC/Nga mice.”* Genisetein might suppress
the atopic disease by downregulation of FceRIB. A mechanism
for downregulation of the mRNA expression of FceRI subunits

dx.doi.org/10.1021/jf301759s | J. Agric. Food Chem. 2012, 60, 8379—8385
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Figure 6. Involvement of ERs in the suppressive effects of isoflavones on the cell surface expression levels of FceRI. (A) Whole cell extracts
were analyzed by western blotting with antibodies against ERa and f-actin. Data are presented as the mean + SD, with n = 3. (B) KU812 cells
were cultured with E2 for 24 h in 5% FBS—RPMI-1640 medium. The FceRI expression level was assessed by flow cytometric analysis, as noted in
Figure 2. (C) KU8I12 cells were preincubated with ICI 182,780 (1 #M) in 5% FBS—RPMI-1640 medium for 30 min. After preincubation, cells were
cultured with 25 uM genistein, daidzein, or (R,S)-equol in 5% FBS—RPMI-1640 medium for 24 h. FceRI expression was assessed by flow cytometric
analysis, as noted in Figure 2. Relative values represent the ratio of mean values compared to that of DMSO- and EtOH-treated cells.

by isoflavones remains unclear. It would be worth examining
the effect of isoflavones on the transcriptional activity of specific
transcription factors of FceRI subunit genes.”>™>*

Equol is a chiral molecule that can exist in two enantiomeric
forms, (S)-equol and (R)-equol, and the enantiomer produced
by metabolic reduction from isoflavones is known to be (S)-
equol.”® Tt is reported that they have different affinities for
ERs,* and (R)-equol inhibits chemically induced tumorigenesis
of breast cancer in vivo, whereas (S)-equol has no effect.*’ We
assessed the effect of (S)-equol and (R)-equol on the mRNA
expression levels of FceRla, FceRIf and FceRly chains. Both
enantiomers equally reduced the mRNA level of o and y
chains (panels D and F of Figure 4), and neither of them had
any effect on the  chain mRNA expression level (Figure 4E).
These data suggest that (S)- and (R)-equol act on FceRI
subunits in the same manner.

8383

Isoflavones Had No Effect on ERK1/2 Phosphoryla-
tion. We previously found that green tea polyphenol EGCG
and flavones, including chrysin and apigenin, suppressed the
level of FceRla expression, and those suppressive effects were
associated with a reduction in the phosphorylation of ERK1/2.%7%*
Thus, we assessed the effect of the isoflavones on the phos-
phorylation levels of ERK1/2 in KU812 cells (Figure S). There
was little change in ERK1/2 phosphorylation after isoflavone
treatment, suggesting that the downregulation of FceRla expres-
sion by isoflavones does not involve modulation of ERK1/2
phosphorylation different from EGCG and flavones.

Suppressive Effect of Isoflavones on the Cell Surface
Expression of FceRl Is Independent of Estrogen
Receptors. Isoflavones are often referred to as phytoestrogens
because they have an affinity for ERs'’ " and are reported to
function through ERs.***” ERs can be detected in a broad

dx.doi.org/10.1021/jf301759s | J. Agric. Food Chem. 2012, 60, 8379—8385
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spectrum of tissues, with ERa mainly expressed in uterus,
prostate, ovary, testes, epididymis, bone, breast, brain, liver, and
white adipose tissue.** We examined ERa expression levels in
KU812 cells and found that levels were comparable to those of
the MCF-7 human breast cancer positive-control cells (Figure 6A).
Next, we examined whether the suppressive effects of iso-
flavones on the expression of FceRla were dependent upon
ERs. E2, an agonist for ERs, had little effect on the cell surface
FceRla expression level (Figure 6B). The suppressive effects
of genistein, daidzein, and (R,S)-equol were unaffected by ICI
182,780, an antagonist for ERs (Figure 6C). These results sug-
gest that the suppressive effects of isoflavones on FceRla
expression are independent of ERs. Although a majority of the
mechanisms elucidated for the physiological actions of iso-
flavones are believed to involve ERs, the existence of ER-
independent effects has recently been suggested. Genistein
has been reported to decrease thymus weight in ovariectom-
ized adult mice through both ER and non-ER mechanisms.*
Genistein also induces apoptosis in zebrafish embryos in
an ER-independent manner.”® The rapid vascular relaxation
effect of equol in human aortic and umbilical vein endothelial
cells has been reported to be independent of ERs.*' Equol
inhibits nuclear factor-«B activation and the subsequent gene
expression of tumor necrosis factor-a in mouse macrophages
independent of ER.*> We demonstrated a suppressive effect
on FceRla expression as a novel ER-independent activity of
isoflavones in the present study. Further studies are needed to
understand the detailed mechanisms and the molecular targets
of ER-independent effects of isoflavones.

In summary, we demonstrated that isoflavones, such as
genistein, daidzein, and equol, suppress the expression of
FceRla partially as a result of reducing the mRNA expression of
FceRla in an ER-independent manner. Besides, genistein
reduces the mRNA level of FceRIf, and daidzein and equol
downregulate that of FceRly. It would be worth considering the
effect of soy-based foods that contain isoflavones on the expres-
sion of FceRl. Our results should help applications of iso-
flavones to therapeutic potential, preventing various allergic diseases.
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